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1 Introduction

The focus of this paper is on cold plasma, which is characterized by a low
enough temperature that the motion of ions other than electrons is neglected-
essentially an electron gas. This approximation has various applications in low
energy plasma physics [11][4][8] and photonics [3] [7] [14]. The wave dynamics
for cold plasma and plasmas in general has been well studied [15], but recent
advances in topological physics suggest that topological arguments may be able
to predict novel behaviors in plasmas. For a review of the topological physics
in general and as applied to plasma physics see [6] [13] [9].

Recently, one topologically protected edge state at the edge between two re-
gions of topologically distinct electron densities, termed the Topological Lang-
muir Cyclotron Wave (TLCW) has been studied. Parker et. al. first predicted
the mode using numerical methods in [11], and Fu and Qin provided a detailed
analysis of this mode in [12] [1] and characterized the topological phases of the
system in [2].

The preferred topological invariants used in this system and other hydro-
dynamic like systems are Chern numbers. The main goal of this paper is to
expand on the results of [2] [12] [11] by analytically calculating all the Chern
numbers of the system, which were previously only calculated numerically. It
is apparent from the fact that some Chern numbers are not integer-valued that
the Bulk-Edge Correspondence (BEC) does not exist for this system without
some modification. Although we do not attempt to prove the existence or non-
existence of the BEC here, some intuition regarding it’s validity is analyzed in
Section 5 by comparing with some numerical results, particularly in the case
where some regularization factors are added in.

Some analytic calculations of Chern numbers have been done for particular
parameter values (kz = 0) [5] which are of particular interest in photonics. In
this case we shall see that the system as we have defined it actually breaks into
two de-coupled systems and fundamentally alters the topological structure.

We will begin by deriving the Hamiltonian of the system and analyzing
its symmetry properties. Then, all the eigenvectors needed to calculate Chern
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numbers are derived. Although analytical expressions are not available for eigen-
vectors in the general case, we will find that only certain limits of eigenvectors
are needed to calculate the Chern numbers of this system [14]. Applying these
results allows us to calculate some Chern numbers directly and infer all others
from symmetries of the system. Finally, the kz = 0 case is analyzed inde-
pendently and compared to the general case, and some numerical results are
presented to develop some intuition on whether a BEC can exist in general.

1.1 Derivation of Equations

The following derivation largely mirrors the derivation in [15]. We are interested
here in waves in a plasma biased by a constant incident magnetic fieldB0 = ẑB0.
We start with Maxwell’s equations and Lorentz force equation for a cloud of
electrons with density ne, velocity v, and charge qe. In order to linearize the
problem, only the incident field is considered in Lorentz’s equation, which is
merely to assume that the magnitude of any waves present in the plasma are
small compared to the incident field.

me
∂v

∂t
= qe(E + v ×B0)

c2∇×B =
1

ϵ0
J +

∂E

∂t
=

neqev

ϵ0
+

∂E

∂t

∇× E = −∂B

∂t

Note that we treat the electron density as a constant, or slowly varying with
respect to frequency, mean density about which the electrons essentially “vi-
brate”. SI units are used above, but we will re-normalize the system so that v,
E, and k all have units of electric field m·kg

s2·C = N/C. Now we will make the
substitutions:

vn = v
meωp

qe

Bn = cB

We define the electron plasma frequency and electron gyro-frequency respec-
tively as:

ωp =

√
neq2e
meϵ0

Ω = −B0qe
me

Note that since qe < 0 we have that Ω is the same sign as B0. This gives the
equations:

∂tvn = ωpE +Ωẑ × vn

∂tE = c∇×Bn − ωpvn

∂tBn = −c∇× E
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For the majority of the paper we will be concerned with obtaining and analyzing
eigenvalues of the system, so we take the Fourier transform in space and time
to obtain:

iωṽn = ωpẼ +Ωẑ × ṽn

iωẼ = −ick × B̃n − ωpṽn

iωB̃ = ick × Ẽ

Finally normalizing kn = ck we get:

ωṽn = −iωpẼ − iΩẑ × ṽn

ωẼ = −kn × B̃n + iωpṽn

ωB̃ = kn × Ẽ

For the rest of this paper we will drop the subscripts and x̃ notation and simply
regard v,E,B as the normalized Fourier transform of themselves as defined
above. This gives the eigenvalue problem:

H

vE
B

 = ω

vE
B


For the 9x9 Hamiltonian:

H =

−iΩẑ× −iωpI 0
iωpI 0 −k×
0 k× 0

 (1)

Here and throughout we use the shorthand for the cross product matrix:

u× =

 0 −uz uy

uz 0 −ux

−uy ux 0


for u ∈ C3. Because electron motion in the ẑ direction is unaffected by the inci-
dent magnetic field, kz can be treated as a parameter of the system along with
Ω- proportional to B0- and ωp- proportional to

√
ne. For a detailed discussion

of the validity of this assumption and the cold-plasma approximation in general
see [15].

1.2 Susceptibility Tensor

In many cases it will be useful to eliminate v from the system using the suscep-
tibility tensor χ such that v = χE. Writing out the v row of H gives:

iΩẑ × v − iωpE = ωv
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Now make substitute the circularly left and right polarized vectors:

v± = e± =

 1
±i
0


Then we get:

−Ωẑ × v± + iωv± = ωpE± ⇒

Ω

±i
−1
0

+ iω

 1
±i
0

 =

i(ω ± Ω)
−Ω∓ ω

0

 =

 iω Ω 0
−Ω iω 0
0 0 0

 v± = ωpE±

Similarly if we assume that v = ẑ then

−Ωẑ × v + iωv = iωv = ωpE ⇒

Ez = i
ω

ωp
vz

Therefore we have that:

1

ωp

 iω Ω 0
−Ω iω 0
0 0 iω

 v = E

For finite ωp, Ω, and ω this matrix is invertible as long as ω ̸= Ω. Therefore
assuming that ω ̸= Ω we get:

χ =

 1

ωp

 iω Ω 0
−Ω iω 0
0 0 iω

−1

=


iωpω

Ω2−ω2 − ωpΩ
Ω2−ω2 0

ωpΩ
Ω2−ω2

iωpω
Ω2−ω2 0

0 0 −i
ωp

ω


If we substitute this into (1) the first line is eliminated (we used it to derive χ)
and the Hamiltonian becomes:

H =

[
iωpχ −k×
k× 0

]
(2)

H

[
E
B

]
= ω

[
E
B

]

2 Eigenvalue Symmetry

2.1 ±ω Symmetry

Below we prove that the eigenvalues of Ĥ have symmetry in ±n for n =
{−4,−3, ..., 3, 4}. In particular if:

Hx = ωnx (3)
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x =

vE
B


then

H

 v∗

E∗

−B∗

 = −ωn

 v∗

E∗

−B∗


First notice that the cross product matrix as defined above is real anti-symmetric:

k× = −(k×)∗ = −(k×)T

Assume that (3) holds. By straightforward computation we have:

Ĥ

 v∗

E∗

−B∗

 =

−iΩẑ × v∗ − iωpE
∗

iωpv
∗ + k×B∗

k× E∗


By the properties of the cross product from above we have that:

ẑ × v∗ = ((v∗)†(ẑ×)†)† = (vT (ẑ×)T )† = (ẑ × v)∗

and likewise:
k×B∗ = (k×B)∗

k× E∗ = (k× E)∗

From (3) we get that:
k× E = ωnB ⇒

k× E∗ = (k× E)∗ = (ωnB)∗ = ωnB
∗

where we know that ωn is real since H is Hermitian. Likewise from (2) we get:

ωnE = iωpv − k×B = i(ωpRe(v)− Im(k×B))− (ωpIm(v) + Re(k×B))

Comparing with (v∗, E∗,−B∗):

iωpv
∗+k×B∗ = i(ωpRe(v)−Im(k×B))+(ωpIm(v)+Re(k×B)) = −(iωpv−k×B)∗ = −ωnE

∗

Similarly for the velocity component:

ωnv = −iΩẑ×v− iωpE = −i(ΩRe(ẑ×v)+ωpRe(E))+(ΩIm(ẑ×v)+ωpIm(E))

−iΩẑ×v∗−iωpE
∗ = −i(ΩRe(ẑ×v∗)+ωpRe(E))−(ΩIm(ẑ×v)+ωpIm(E)) = −(−iΩẑ×v−iωpE)∗ = −ωnv

∗

Ĥ

 v∗

E∗

−B∗

 = −ωn

 v∗

E∗

−B∗

 (4)

or in other words the eigenvalues of Ĥ are symmetric around 0 and their associ-
ated eigenvectors are obtained by conjugation and reflection across the B-plane.
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2.2 ±Ω Symmetry

From (1) we can see that:−I 0 0
0 I 0
0 0 −I

H(Ω)

I 0 0
0 −I 0
0 0 I

 = −ΓΩH(Ω)ΓΩ = H(−Ω)

ΓΩ is clearly orthogonal so:

ΓΩH(Ω) = −H(−Ω)ΓΩ

Assuming (3) holds this gives:

ΓΩH(Ω)x = ΓΩωnx = −H(−Ω)ΓΩx ⇒

H(−Ω)(ΓΩx) = −ωn(ΓΩx)

Therefore if (3) holds then −ωn is an eigenvalue of H(−Ω) with eigenvector:

x =

 v
−E
B


Combining this fact with (4) we get that ωn is also an eigenvector of H(−Ω)
with eigenvector:  v∗

−E∗

−B∗


2.3 ±k Symmetry

Now define the projection:

Γk =

I 0 0
0 I 0
0 0 −I


Then we have:

H(−k) = ΓkH(k)Γk

Similarly to the previous subsection then:

ωn(Γkx) = H(−k)(Γkx)

so we have that ωn is an eigenvalue of H(−k) with eigenvector: v
E
−B


and from (4) we know that −ωn is an eigenvalue of H(−k) with eigenvector:v∗E∗

B∗


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2.4 kx/ky Plane Rotational Symmetry

Consider rotating the k vector in the x/y plane. Suppose that after k is rotated
in the x/y plane by and angle θ, the new Hamiltonian is Hθ. Using the usual
2-d rotation matrix we can see that if we rotate k by an angle θ in the x/y plane
we get: cos θ − sin θ 0

sin θ cos θ 0
0 0 1

kxky
kz

 =

kx cos θ − ky sin θ
kx sin θ + ky cos θ

kz


Denote the new rotated components kx2 = kx cos θ−ky sin θ and ky2 = kx sin θ+
ky cos θ. Also denote the rotation matrix:

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


One can easily show that R is orthonormal. Remembering the definition of k×:

k× =

 0 −kz ky
kz 0 −kx
−ky kx 0


we can see that we want to rotate the vector

[
ky −kx 0

]T
in the third column

and the same corresponding column vector in the third row.[
0 1
−1 0

] [
kx
ky

]
= S

[
kx
ky

]
=

[
ky
−kx

]
Noticing that S−1 = −S we can see that x/y plane rotation by θ can be accom-
plished on the (ky,−kx)

T vector by the transformation:

−SRS

[
ky
kx

]
=

[
ky2
−kx2

]
Now due to the fact that R is anti-symmetric, it commutes with S, so −SRS =
−SSR = R. Rotating the last row would be equivalent to the operation:(

R

[
ky
−kx

])T

=
[
ky −kx

]
RT

Noticing that the upper left portion of k× is just a factor of S we can see that:

R[k×]RT =

 0 −kz ky2
kz 0 −kx2

−ky2 kx2 0


which can be verified by straightforward calculation. Therefore denoting:

R =

R 0 0
0 R 0
0 0 R


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and noticing that ẑ× is also a factor of S and using the fact thatR is orthonormal
we get:

Hθ = RHRT

This derivation was shown to highlight the symmetries of the problem but
straightforward computation also verifies this fact. Assume that x is and eigen-
vector of H with eigenvalue ω, or Hx = ω. Multiplying the above equation on
the right by R gives:

HθR = RH ⇒

Hθ(Rx) = RHx = ω(Rx)

Therefore ω is also an eigenvalue of Hθ with eigenvector Rx, which simply
rotates the x and y components of v,E,B respectively by θ.

3 Eigenvector Calculations

As shown above, the eigenvalues have well-defined ± symmetry, so we will only
show derivations for the positive and zero-valued eigenvalues. First note that
there is a zero eigenvalue for any parameter choice which is Ψ = (0, 0, k). Plug-
ging this Ansatz into (1) we get:

k × E = k × 0 = 0

iωpv − k ×B = −k × k = 0

−iΩẑ × v − iωpE = 0

regardless of the values of kz, k⊥, ωp,Ω. Therefore we have the eigenvalue/eigenvector
pair:

ω0 = 0

Ψ0 = (0, 0, k)

Unfortunately this is the only readily available eigenvalue/eigenvector pair which
applies to all parameter values. Below we consider some instructive and espe-
cially useful cases where eigenvalues can be analytically derived.

3.1 Simplest Case: Ω = 0

The non-negative eigenvalues and eigenvectors are shown below. Due to ±ω
symmetry as proved above all bands are symmetric around ω = 0 so it is suf-
ficient to consider only non-negative bands. Detailed calculations are shown in
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Appendix A.

ω0 = 0

Ψ0 = (−ik ×B, 0, ωpB)(3)

ω1 = ωp

Ψ1 = (k, ik, 0)

ω2 =
√

k2 + ω2
p

Ψ2 = (ωpv, iω2v, ik × v)(2)

(5)

Here B can be chosen to be any orthonormal basis of R3 to produce three de-
generate eigenvalues at ω0 = 0 and v can be chosen to be any orthonormal basis

perpendicular to k to produce two degenerate eigenvectors for ω2 =
√
k2 + ω2

p.

These degenerate eigenvalues show that a topologically protected edge state is
possible around the boundary Ω = 0 when varying Ω.

3.2 Case: k⊥ = 0

The k⊥ = 0 case is important for two reasons. First, band crossings only happen
when k⊥ = 0, Ω = 0, or kz = 0, so these parameter values are important for
considering topologically protected edge states. Second, as we will see later, the
k⊥ = 0 eigenvectors are essential for calculating Chern numbers. Calculations
are presented below along with analysis of band crossings that will be especially
useful in calculting Chern numbers.

Setting k⊥ = (kx, ky) = 0 gives us the eigenvalue equation from (1):

−iΩẑ × v − iωpE = ωv

iωpv − kz ẑ ×B = ωE

kz ẑ × E = ωB

(6)

We will consider the non-trivial case kz ̸= 0. Consider the Ansatz for a
plasma oscillation, or ω1 = ωp. From the first line of (6) we get:

−iΩẑ × v − iωpE = ωpv

If we consider the case that v is either real or purely imaginary it’s apparent
from this equation that iΩẑ×v ⊥ ωpv. Therefore a non-trivial solution is E = ẑ
and v = −iẑ It follows from the rest of (6) that:

ωpB = kz ẑ × E = kz ẑ × ẑ = 0 ⇒ B = 0

iωpv − kz ẑ ×B = ωpẑ = ωpE

Therefore we have the plasma eigenmode:

ω1 = ωp
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Ψ1 = (
ẑ√
2
,
iẑ√
2
, 0)

For the remaining 3 positive eigenvalues we will utilize the susceptibility tensor
calculated in Section 1.1 v = χE. As we showed that the vectors right and
left circularly polarized vectors in the x/y plane E± = v± = (1,±i, 0) are
eigenvectors of χ these may be good Ansatz’s for eigenvectors of the whole
system.

With some rearranging of (2) we get:

k × E = ωB ⇒ k ×B =
k

ω
× (k × E)

ω(I − i
ωp

ω
χ)E + k ×B = 0 ⇒

k

ω
× (

k

ω
× E) + (I − i

ωp

ω
χ)E = 0

Setting I − i(ωp/ω)χ = ϵ and n = k/ω this gives what is commonly known as
the homogeneous plasma wave equation:

n× (n× E) + ϵE = 0 (7)

The dielectric tensor ϵ is commonly written as:

ϵ =

 S iD 0
−iD S 0
0 0 P


where one can check easily that:

R = 1−
ω2
p

ω(ω +Ω)

L = 1−
ω2
p

ω(ω − Ω)

S =
1

2
(R+ L)

D =
1

2
(R− L)

P = 1−
ω2
p

ω2

Assuming WLOG that ky = ny = 0 and denoting θ as the angle between
n and ẑ we can represent the operator [n× (n×] in matrix form and write the
plasma wave equation as:S − n2 cos2 θ iD n2 cos θ sin θ

−iD S − n2 0
n2 cos θ sin θ 0 P − n2 sin2 θ

E = 0 (8)
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This is in fact the dispersion relation for the whole system, however it is not
solvable in closed form for arbitrary θ. For the current case k = kz ẑ ⇒ θ = 0
and the dispersion relation gives:S − n2 iD 0

−iD S − n2 0
0 0 P

E = 0

Note that the P = 1− ω2
p

ω2 = 0, E = ẑ case has already been addressed. There-
fore, as mentioned above we will guess that the remaining eigenmodes have E
component polarized in the x/y plane. Assuming that Ez = 0 and taking the
determinant of the upper left matrix to determine when it is singular gives the
equation:

(S − n2)2 −D2 = 0

Plugging in the definition of S and D gives the dispersion relation:

1

4
(R+ L)2 + (n2)2 − n2(L+R)− 1

4
(L−R)2 = LR+ n2(n2 − L−R) = 0

We can see that solutions to this equation are:

n2 = R ⇒(
k

ω

)2

= 1−
ω2
p

ω(ω +Ω)
⇒

k2 = ω2 −
ω2
p

1 + Ω
ω

(9)

which is usually called the R-wave (right circularly polarized), and

n2 = L ⇒(
k

ω

)2

= 1−
ω2
p

ω(ω − Ω)
⇒

k2 = ω2 −
ω2
p

1− Ω
ω

(10)

which is usually called the L-wave (left circularly polarized). With some el-
ementary manipulation we can see that the eigenvalues are roots of the cubic
polynomials:

ω3
R +Ωω2

R − (k2 + ω2
p)ωR − k2Ω = 0 (11)

for the R-wave and:

ω3
L − Ωω2

L − (k2 + ω2
p)ωL + k2Ω = 0 (12)

for the L wave. Assuming that all the roots are real these account for the
remaining six eigenvalues. Explicit formulas are possible as well, though they
are complicated and not very instructive.
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To illustrate some of the behavior of these eigenvalues first take the kz = 0
case. Immediately we see the L and R modes share the eigenvalue ω = 0 and
the remaining values are the roots of the quadratic equations:

ω2 +Ωω − ω2
p = 0 ⇒

ω0
R

ωp
=

−σ ±
√
σ2 + 4

2
=

√(σ
2

)2
+ 1− σ

2

for the R-waves and
ω2 − Ωω − ω2

p = 0 ⇒

ω0
L

ωp
=

σ ±
√
σ2 + 4

2
=

σ

2
+

√(σ
2

)2
+ 1

for the L-waves. If we analyze (9) and (10) as k → ∞ we can see that for
positive ω the L-wave either has ω → ∞ or ω → Ω− and the R-wave only
supports ω → ∞. Therefore it’s apparent from these equations that there are
2 positive L-waves. One which ωL starts at 0 when k = 0 and goes to Ω as
k → ∞. This lower branch usually called the cyclotron mode [2] as it converges
to the cyclotron frequency Ω. And one which starts at ω0

L and goes to ∞ as
k → ∞. There is one positive R-wave.

Analyzing the positive R-wave, since we are assuming that σ > 0 we have
(σ/2)2 + 1 < (σ/2 + 1)2 ⇒ ω0

R < ωp. From (9) we can also see that, assuming
ω > 0 we must have ω → ∞ for k → ∞. Therefore we know that the positive
R-wave crosses the Langmuir band. Plugging in ω = ωp = ω+ into (9) gives:

k2z = ω2
+ −

ω2
+

1 + Ω
ω+

⇒ Ωω2
+ − k2zω+ − Ωk2z = 0 ⇒

ω+ =
k2z +

√
k4z + 4Ω2k2z
2Ω

ω+

Ω
=

1

2

√(kz
Ω

)4

+ 4

(
kz
Ω

)2

+

(
kz
Ω

)2


which characterizes the band crossing between the positive R-band and the
Langmuir band.

Similarly if ωp < Ω (σ > 1) we can see that the cyclotron band (lower
L-wave) crosses the Langmuir band (when kz = 0, ω−

L = 0 and as kz → ∞,
ω−
L → Ω). Denoting this crossing ω = ωp = ω− we get:

k2z = ω2
− −

ω2
−

1− Ω
ω−

⇒ Ωω2
− + k2zω− − Ωk2z = 0 ⇒

ω− =

√
k4z + 4Ω2k2z − k2z

2Ω
⇒

12



ω−

Ω
=

1

2

√(kz
Ω

)4

+ 4

(
kz
Ω

)2

−
(
kz
Ω

)2


By analyzing (9) and (10) we can see that as ωp → 0 we must have ωL,R → kz.
Therefore since ωR and ωL only cross ωp at one point we must have that when
ωp < ω+, ωR > ωp, when ωp < ω−, ωL > ωp, and similarly when ωp > ω±
ωR,L < ωp respectively. This ordering is especially important when calculating
Chern numbers below.

Numerical illustration of band crossings and eigenvalue behavior is shown in
Figure 1. The ω− crossing gives rise to what is termed the Topological Cyclotron
Langmuir wave (TCLW), extensively studied in [12], and has a topologically
protected edge state as we shall see below.

Particularly important for the calculation of Chern numbers are the eigen-
vectors associated with these eigenvalues. Assuming that Ez = 0 and plugging
in n2 = R we get:

S − n2 = S −R = −D ⇒−D iD 0
−iD −D 0
0 0 P

Ex

Ey

Ez

 = 0 ⇒

ER = (1,−i, 0)T

Similarly if n2 = L we get S−n2 = D and EL = (1, i, 0)T , which represent left-
and right-circularly polarized electric field as our notation suggested above. We
can use the equations k × E = ωB and χE = v to obtain the full eigenvectors
for R- and L-modes:

ΨR =

(
i

ωp

Ω− ωR
e−, e−,

k

ωR
ẑ × e−

)

ΨL =

(
−i

ωp

Ω+ ωL
e+, e+,

k

ωL
ẑ × e+

)
Here we have used the circularly polarized vectors as defined in Section 1.1
e± = (1,±i, 0). To summarize we have found eigenmodes:

ω0 = 0

Ψ0 = (0, 0, k)

ω1 = ωp

Ψ1 = (ẑ, iẑ, 0)

ω3
R +Ωω2

R − (k2 + ω2
p)ωR − k2Ω = 0

ΨR =

(
i

ωp

Ω− ωR
e−, e−,

k

ωR
ẑ × e−

)
ω3
L − Ωω2

L − (k2 + ω2
p)ωL + k2Ω = 0

ΨL =

(
−i

ωp

Ω+ ωL
e+, e+,

k

ωL
ẑ × e+

)
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As we will see later, not only does k⊥ = 0 provide interesting band crossings, but
this case is also essential for determining topological invariants for the system.

Figure 1: Eigenvalues plotted as a function of kz for k⊥ = 0. All values nor-
malized to ωp. Left shows σ = 2 and right shows σ = 0.75. As discussed above
the lower frequency L-wave starts at 0 and converges to σ as kz → ∞. The
high frequency L-wave and the positive R-wave start at 1

2 (−σ +
√
σ2 + 4) and

1
2 (σ +

√
σ2 + 4) respectively and converge to ω = kz asymptotically.

3.3 kz = 0 Case

Like Ω = 0, the kz = 0 case produces coincident bands, and so is also interest-
ing to study on its own. Calculation of eigenvectors utilizes the plasma wave
equation and largely mirrors the k⊥ = 0 case. Full calculations are shown in
Appendix B, and the eigenvalues and eigenvectors are as follows:

ω0 = 0, ω1 =
√
k2 + ω2

p

ω2 =

√
1

2

(
k2 + ω2

h −
√
k4 + 2(2ω2

p − k2)Ω2 +Ω4
)

ω3 =

√
1

2

(
k2 + ω2

h +
√
k4 + 2(2ω2

p − k2)Ω2 +Ω4
)

Ψ
(1)
0 = (0, 0, k), Ψ

(2)
0 = (k × ẑ,−σk, iωpẑ), Ψ

(3)
0 = (k2ẑ, 0,−ik × ẑ)

Ψ1 = (−iẑ, ω1ẑ, k × ẑ)

Ψ2,3 =

(
i

ωp
(I − ϵ−1)k × ẑ, ϵ−1 k

ω2,3
× ẑ, −ẑ

)
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3.4 Case: k⊥ → ∞
Finding eigenvectors as k → ∞ will also prove to be essential for calculating
Chern numbers. We will analyze this situation by breaking H into:

H = r

− iΩ
r ẑ× − iωp

r I 0
iωp

r I 0 −kr×
0 kr× 0

 = rHr

kr× = k̂⊥ ×+
1

r
kz×

where k̂⊥ is the unit vector in the k⊥ direction. From this decomposition we can
see that |k⊥| = r so as r → ∞, k⊥ → ∞. If we find the eigenvalue decomposition
for Hr:

Hr = VrΛrV
†
r

then we can see that the eigenvalue decomposition for H is:

H = rHr = Vr(rΛr)V
†
r

so H and Hr share eigenvectors for all r and the eigenvalues of H are r times the
eigenvalues of Hr. Since the eigenvectors are shared, we will focus on calculating
the eigenvectors of Hr as r → ∞.

As before, we will be concerned with the positive eigenvalues and associated
eigenvectors. With this in mind, we will focus on three cases for the eigenvectors
of Hr. If ω is an eigenvector of H, then as k⊥ → ∞ either ω → ∞, ω → ω̄ for
some 0 < ω̄ < ∞, or ω → 0. If ωr = ω/r is the associated eigenvalue of Hr

then this corresponds to ωr = c for some 0 < c < ∞, ωr = ω̄/r, and ωr = 0
respectively.

First take the case that ωr is just some positive constant. Then:− iΩ
r ẑ× − iωp

r I 0
iωp

r I 0 −kr×
0 kr× 0

vE
B

 = ωr

vE
B


Taking r → ∞ we can see from the first line that v = 0. The second and third
lines then yield:

−k̂⊥ ×B = ωrE

k̂⊥ × E = ωrB

A natural guess would be that either E = ẑ or B = ẑ which is perpendicular to
k⊥. Starting with E = ẑ we get:

B =
1

ωr
k̂⊥ × ẑ

− 1

ωr
k̂⊥ × (k̂⊥ × ẑ) =

1

ωr
ẑ = ωr ẑ ⇒ ωr = 1

15



Similarly for B = ẑ:
−k̂⊥ × ẑ = ẑ × k̂⊥ = ωrE

1

ωr
k̂⊥ × (ẑ × k̂⊥) =

ẑ

ωr
= ωr ẑ ⇒ ωr = 1

Therefore ω∞ = rωr = k⊥ is an eigenvalue of H as k⊥ → ∞ with eigenvectors:

Ψ(1)
∞ = (0, ẑ, k̂⊥ × ẑ)

Ψ(2)
∞ = (0, k̂⊥ × ẑ,−ẑ)

Next consider the case that ωr = ω̄/r. Plugging this in yields:− iΩ
r ẑ× − iωp

r I 0
iωp

r I 0 −kr×
0 kr× 0

vE
B

 =
ω̄

r

vE
B


Expanding the third row we get:

k̂⊥ × E +
kz
r

× E =
ω̄

r
B

Since the k̂⊥×E is the only term that does not go to zero we must have E → k̂⊥
or E → 0 as r → ∞. Assuming for now that E = k̂⊥ from the second line we
get:

i
ωp

r
v − kz

r
×B − k̂⊥ ×B =

ω̄

r
E

Again as the only term that doesn’t go to zero is −k̂⊥ × B we must have that
B = 0 or B = k̂⊥. Now the first line give:

− iΩ

r
ẑ × v − i

ωp

r
E =

ω̄

r
v ⇒

iΩẑ × v − iωpE = ω̄v

Here we will make use of the susceptibility tensor χE = v where χ is defined
with ω → ω̄. This is possible because in this form the first row is identical to
the first row of (1) with ω → ω̄. Therefore:

v = χE =
ωp

Ω2 − ω̄2

iω̄ −Ω 0
Ω iω̄ 0
0 0 −i(Ω2 − ω̄2)/ω̄

k̂x
k̂y
0



=
ωp

Ω2 − ω̄2

iω̄k̂x − Ωk̂y
iω̄k̂y +Ωk̂x

0


=

ωp

Ω2 − ω̄2
(iω̄k̂⊥ − Ωk̂⊥ × ẑ)
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Therefore we have the eigenvalue ω1 = rωr = ω̄ with eigenvector:

Ψ1 =

(
ωp

Ω2 − ω̄2
(iω̄k̂⊥ − Ωk̂⊥ × ẑ), k̂⊥, 0

)
Finally we will find the zero eigenvectors. Substituting ωr = 0 and r → ∞ we
get from the last two lines:

k̂⊥ × E = 0

−k̂⊥ ×B = 0

So again E = 0 or k̂⊥ and B = 0 or k̂⊥. From the first line we get:

−Ωẑ × v = ωpE

so if E = 0 then v = 0 or v = ẑ. This recovers our universal zero eigenvector
Ψ0 = (0, 0, k̂⊥). If B = 0 and E = k̂⊥ then we get:

−σẑ × v = k̂⊥

To ensure a basis for the whole null space we will consider that v = ak̂⊥× ẑ±bẑ
so that:

−σẑ × v = −σak̂⊥ = k̂⊥ ⇒ a = − 1

σ

Therefore we have the zero eigenvectors:

Ψ
(2)
0 = (k̂⊥ × ẑ + σbẑ,−σk̂⊥, 0)

Ψ
(3)
0 = (k̂⊥ × ẑ − σbẑ,−σk̂⊥, 0)

Requiring that Ψ
(2)
0 and Ψ

(3)
0 are orthogonal we get:

Ψ
∗(2)
0 Ψ

(3)
0 = 1− σ2b2 + σ2 = 0 ⇒

b =

√
1 +

1

σ2
=

√
1 + σ2

σ

so we get three zero eigenvectors:

Ψ
(1)
0 = (0, 0, k̂⊥)

Ψ
(2)
0 = (k̂⊥ × ẑ +

√
1 + σ2ẑ,−σk̂⊥, 0)

Ψ
(3)
0 = (k̂⊥ × ẑ −

√
1 + σ2ẑ,−σk̂⊥, 0)

It is also apparent now that all eigenvectors pairs are orthogonal to one another

except Ψ1 with Ψ
(2,3)
0 . We also did not specify an eigenvalue for ω̄ however so

we still have one free variable.

Ψ∗
1Ψ

(2,3)
0 =

(
ωp

Ω2 − ω̄2
(−iω̄k̂⊥ − Ωk̂⊥ × ẑ), k̂⊥, 0

)
·(k̂⊥×ẑ±

√
1 + σ2ẑ,−σk̂⊥, 0)

T
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= − Ωωp

Ω2 − ω̄2
− σ = 0 ⇒

ω̄2 = ω2
p +Ω2 = ω2

uh

Plugging this result in and summarizing, the eigenvectors and eigenvalues of H
as k⊥ → ∞ are:

ω0 = 0

Ψ
(1)
0 = (0, 0, k̂⊥) Ψ

(2)
0 = (k̂⊥×ẑ+

√
1 + σ2ẑ,−σk̂⊥, 0) Ψ

(3)
0 = (k̂⊥×ẑ−

√
1 + σ2ẑ,−σk̂⊥, 0)

ω1 = ωuh

Ψ1 =

(
σk̂⊥ × ẑ − i

ωuh

ωp
k̂⊥, k̂⊥, 0

)
ω2 = k⊥(→ ∞)

Ψ
(1)
2 = (0, ẑ, k̂⊥ × ẑ) Ψ

(2)
2 = (0, k̂⊥ × ẑ,−ẑ)

4 Chern Numbers

The Chern number of a particular level of the system is defined as the integral
over the parameter space (in our case k⊥) of the Berry Curvature:

Cn =
1

2π

∫
Fn(k⊥) · dk⊥ (13)

The Berry curvature in a 2-d parameter space is defined as the curl of the Berry
connection A(k⊥):

An(k⊥) = i⟨Ψn|∇k⊥Ψn⟩
Fn(k⊥) = ∇k⊥ ×An(k⊥) (14)

Plugging this definition in results in the more compact form for the Berry cur-
vature:

Fn(k⊥) = −2 Im⟨∂kxΨn|∂kyΨn⟩ (15)

We can also use Stokes theorem to derive the following definition, which is
especially useful in the continuum case [14]:∫

S

∇k⊥ ×An(k⊥) · dk⊥ =

∮
∂S

An(k⊥) · dl ⇒

Cn =
1

2π

[∮
k→∞

An(k⊥) · dl−
∮
k→0

An(k⊥) · dl
]

(16)

Finally, assuming that our eigenvectors form an orthonormal basis we have
another form of the Berry Curvature which avoids taking derivatives of the
eigenvectors themselves:

Fn(k) = −2Im

∑
m ̸=n

⟨Ψn|∂kxH|Ψm⟩⟨Ψm|∂kyH|Ψn⟩
(ωn − ωm)2

 (17)
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For full derivation of the above quantities and deeper analysis and discussion see
[9]. When the dependence of the eigenvectors on k⊥ is straightforward (Ω = 0)
using (13) and (15) is is sufficient. For more complex dependence of Ψn on k⊥
(all other cases) (16) will be more useful, and for numerical calculations (17)
is the most useful (having transferred the derivatives to H allows numerical
calculation of Ψn’s).

Next, by leveraging the kx/ky plane symmetry, we can find a more useful
form of (16). From Section 3.4 and (17) we can clearly see (since RTR = I)
that the Berry Curvature in our case is rotationally symmetric in the x/y plane.
We can also use the rotational symmetry of eigenvectors in the kx/ky plane to
derive a more direct equation for Cn using (16). First, parametrize the k⊥ plane
in terms of (k, θ), radial and polar coordinates in the k⊥ plane:

kx = k cos θ

ky = k sin θ

Then we can write the contour integral in (16) as:∮
An(k⊥) · dl = i

∮
Ψ∗

nDk⊥Ψn · dl = ik

∫ 2π

0

(Ψ∗
nDk⊥Ψn) · θ̂ dθ

= ik

∫ 2π

0

(
Ψ∗

n∂kx
Ψn, Ψ∗

n∂ky
Ψn

)(− sin θ
cos θ

)
dθ

= ik

∫ 2π

0

cos θ(Ψ∗
n∂kyΨn)− sin θ(Ψ∗

n∂kx
Ψn)dθ

We can calculate:

∂kx
Ψn =

∂k

∂kx
∂kΨn +

∂θ

∂kx
∂θΨn =

k cos θ∂kΨn − sin θ∂θΨn

k

∂kyΨn =
∂k

∂ky
∂kΨn +

∂θ

∂ky
∂θΨn =

k sin θ∂kΨn + cos θ∂θΨn

k

⇒ k
(
cos θ(Ψ∗

n∂kyΨn)− sin θ(Ψ∗
n∂kxΨn)

)
= −k cos θ sin θΨ∗

n∂kΨn + sin2 θΨ∗
n∂θΨn + k cos θ sin θΨ∗

n∂kΨn + cos2 θΨ∗
n∂θΨn

= Ψ∗
n∂θΨn

Therefore we get:∮
An(k⊥)·dl = ik

∫ 2π

0

cos θ(Ψ∗
n∂ky

Ψn)−sin θ(Ψ∗
n∂kx

Ψn)dθ = i

∫ 2π

0

Ψ∗
n∂θΨndθ

Now due to the rotational symmetry of Ψn we can parametrize Ψn as Ψn =
RΨn0 where Ψn0 = Ψn(k, θ = 0) and R defined as in Section 3.4. Then since
Ψn0 is fixed we get:

Ψ∗
n∂θΨn = Ψ∗

n0R
T∂θ(RΨn0) = Ψ∗

n0R
T∂θ(R)Ψn0
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Remembering from Section 3.4 that:

R =

R 0 0
0 R 0
0 0 R



R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


we get that

∂θR =

∂θR 0 0
0 ∂θR 0
0 0 ∂θR


with

∂θR =

− sin θ − cos θ 0
cos θ − sin θ 0
0 0 0

 =

0 −1 0
1 0 0
0 0 0

R = [ẑ×]R = Rẑ×

where in the last equality we used the fact from 3.4 that R and ẑ× commute.
Denoting the matrix:

Z× =

ẑ× 0 0
0 ẑ× 0
0 0 ẑ×


we get:

Ψ∗
n∂θΨn = Ψ∗

n0R
TRZ×Ψn0 = Ψ∗

n0Z×Ψn0

Therefore we get:∮
An(k⊥) · dl = i

∫ 2π

0

Ψ∗
n∂θΨndθ = i

∫ 2π

0

Ψ∗
n0Z×Ψn0dθ

Since Ψn0 is fixed for a given k we can plug this into (16) to get:

Cn = lim
k→∞

iΨ∗
n0(Z×Ψn0)− lim

k→0
iΨ∗

n0(Z×Ψn0) (18)

Note that this result holds for any 2-dimensional parameter space with rotational
symmetry (e.g. any system where the final result of 3.4 holds).

4.1 Chern Number Symmetry

Suppose that we have calculated a Chern number Cn for a positive band with
eigenvalue ωn with positive Ω. Supposing that the eigenvector for this band is
simply (v,E,B)T , we know that the Chern number is given by (16) with:

Ψ∗
n0Z×Ψn0 = v†(ẑ × v) + E†(ẑ × E) +B†(ẑ ×B)
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Now suppose that we want to find the Chern number C−n for the associated
negative band −ωn. From Section 4.1 we know the associated eigenvector is
(v∗, E∗,−B∗) so we get:

Ψ∗
−n0Z×Ψ−n0 = vT (ẑ×v∗)+ET (ẑ×E∗)+BT (ẑ×B∗) = (v†(ẑ×v))∗+(E†(ẑ×E))∗+(B†(ẑ×B))∗

= (Ψ∗
n0Z×Ψn0)

∗

Assuming that Cn is a real number, we know that Ψ∗
n0Z×Ψn0 must be purely

imaginary, so we get:

Ψ∗
−n0Z×Ψ−n0 = (Ψ∗

n0Z×Ψn0)
∗ = −Ψ∗

n0Z×Ψn0

⇒ C−n = −Cn

from (16). If we repeat this analysis instead for C−Ωn, the Chern number
the ωn band reflected across Ω = 0 we get an identical result by using the
results of Section 4.2, so C−Ωn = −Cn. Applying the results of Section 4.3
and 4.4 it’s clear that reflecting kz → −kz gives an identical Chern number,
C−kzn = Cn. Therefore, it’s sufficient to calculate Chern numbers for bands
that have ω,Ω, kz > 0.

4.2 Chern Number Calculations

We now have all the tools necessary to calculate Chern numbers for all bands.
First the general case is presented, but the B = 0 and kz = 0 are also interesting
to consider by themselves and are shown as well.

4.2.1 General Chern Numbers

Here we calculate Chern numbers for non-negative bands assuming that Ω, kz >
0. The symmetry derived in Section 6.1 generalizes these Chern numbers to any
Ω, kz ̸= 0. To use (18) we need only calculate 8 values, two for each positive
eigenvalue ωn, to calculate Cn:

lim
k⊥→0

iΨ∗
n(Z×Ψn)

|Ψn|2

and

lim
k⊥→∞

iΨ∗
n(Z×Ψn)

|Ψn|2

for n ∈ {1, 2, 3, 4}. It’s easy to see that:

iΨ∗
0(Z×Ψ0) = i(0, 0, k)Z×

0
0
k

 = ik · ẑ × k = 0

both as k⊥ → 0 and k⊥ → ∞ so C0 = 0. We have already computed the
eigenvectors for k⊥ = 0 and as k⊥ → ∞ so for the positive bands we can simply
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substitute our results from Sections 5.2 and 5.4 respectively. First for k⊥ = 0
we get:

iΨ∗
p(Z×Ψp) = i(ẑ,−iẑ, 0)

 ẑ × ẑ
iẑ × ẑ

0

 = 0

iΨ∗
R(Z×ΨR) = i

(
−i

ωp

Ω− ωR
e†−, e

†
−,

k

ωR
(ẑ × e−)

†
)i

ωp

Ω−ωR
ẑ × e−

ẑ × e−
− k

ωR
e−


= i

((
1 +

ω2
p

(Ω− ωR)2

)
e†−(ẑ × e−)−

k2

ω2
R

(ẑ × e−)
†e−

)
We can also evaluate:

e†−(ẑ × e−) = (1, i, 0)

i
1
0

 = 2i

(ẑ × e+)
†e+ = (e†+(ẑ × e+))

∗ = −2i

Therefore:

iΨ∗
R(Z×ΨR) = 2

((
1 +

ω2
p

(Ω− ωR)2

)
+

k2

ω2
R

)
Also notice that

e†−e− = 2

so we have:

|ΨR|2 = 2

((
1 +

ω2
p

(Ω− ωR)2

)
+

k2

ω2
R

)
Therefore:

iΨ∗
R(Z×ΨR)

|ΨR|2
= 1

Finally for ωL we get:

iΨ∗
LZ×ΨL = i

(
i

ωp

Ω+ ωL
e†+, e

†
+,

k

ωL
(ẑ × e+)

†
)−i

ωp

Ω+ωL
ẑ × e+

ẑ × e+
− k

ωL
e+



= i

((
1 +

ω2
p

(Ω + ωL)2

)
e†+(ẑ × e+)−

k2

ω2
L

(ẑ × e+)
†e+

)
Once again calculate:

e†+(ẑ × e+) = (1,−i, 0)

−i
1
0

 = −2i
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(ẑ × e+)
†e− = (e†+(ẑ × e−))

∗ = +2i

Therefore:

iΨ∗
LZ×ΨL = 2

((
1 +

ω2
p

(Ω + ωL)2

)
+

k2

ω2
L

)
We can also see that e†−e− = 2 so that:

iΨ∗
LZ×ΨL

|ΨL|2
= +1

Now for the k⊥ → ∞ case. We can see that all the eigenvectors except Ψ1

are real-valued. It’s straightforward to verify that if Ψ ∈ R9:

Ψ∗Z×Ψ = ΨTZ×Ψ = 0

Now consider Ψ1:

Ψ∗
1Z×Ψ1 = i

(
i
ωuh

ωp
k̂⊥ + σk̂⊥ × ẑ, k̂⊥, 0

)iωuh

ωp
k̂⊥ × ẑ + σk̂⊥

k̂⊥ × ẑ
0


= 2σ

ωuh

ωp
= 2σ

√
1 + σ2

We can also calculate:

|Ψ1|2 =
ω2
uh

ω2
p

+ σ2 + 1 =
Ω2 + ω2

p

ω2
p

+ σ2 + 1 = 2(σ2 + 1)

Therefore:
Ψ∗

1Z×Ψ1

|Ψ1|2
=

2σ
√
1 + σ2

2(1 + σ2)
=

σ√
1 + σ2

Now we have all 8 quantities needed to calculate all Chern numbers, but it
is unclear which k⊥ = 0 eigenvectors match with which k⊥ → ∞ eigenvectors.
As k⊥ → ∞ it’s clear that 0 = ω0 < ω1 = ωuh < ω2 = k⊥. We will assume for
now and verify later that the bands only cross when k⊥ = 0, Ω = 0, or kz = 0
and in addition that when k⊥ = 0 the R and L bands never cross one another.
Since we have assumed in this section that Ω, kz > 0 this means that the order
of eigenvalues at k⊥ = 0 determines the order at all intermediate values of k⊥.
Therefore, determining the order of eigenvalues at k⊥ = 0 allows us to pair
eigenvectors at k⊥ = 0 with eigenvectors at k⊥ → ∞.

For the purposes of this section we will call the lower (Cyclotron) L-mode
ωL− and the upper L-mode ωL+ . Assuming that the L and R-bands never cross
we know from our analysis at kz = 0 that ω−

L < ωR < ωL+ From our analysis
in Section 5.2 we found two critical values of ωp:

ω± =

√
k4z + 4Ω2k2z ± k2z

2Ω
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where ω− only exists if Ω > ωp. Clearly ω− < ω+. These boundaries allow us to
form three topologically distinct regions in parameter space. If ω− < ω+ < ωp

we know that ωL− < ωR < ωp. Following the convention in [2] we will name this
region III. If instead ω− < ωp < ω+ we have ωL− < ωp < ωR, which is termed
region II. Finally if ωp < ω− < ω+ we have ωp < ωL− < ωR, which is termed
region I. This allows us to pair k⊥ = 0 eigenvectors with k⊥ → ∞ eigenvectors
and calculate Chern numbers as follows:

Region Eigenvector Pairing Chern Numbers (C1, C2, C3, C4)

I Ψp → Ψ
(2)
0 , ΨL− → Ψ1, ΨR → Ψ

(1)
2 , ΨL+ → Ψ

(2)
2

(
0, σ√

σ2+1
− 1, 1,−1

)
II ΨL− → Ψ

(2)
0 , Ψp → Ψ1, ΨR → Ψ

(1)
2 , ΨL+ → Ψ

(2)
2

(
−1, σ√

σ2+1
, 1,−1

)
III ΨL− → Ψ

(2)
0 , ΨR → Ψ1, Ψp → Ψ

(1)
2 , ΨL+ → Ψ

(2)
2

(
−1, 1 + σ√

σ2+1
, 0,−1

)
4.2.2 B0 = 0

Due to the straightforward expressions for eigenvectors in the Ω = 0 case we
can apply (14) directly to calculate Chern numbers in this case. Detailed cal-
culations are shown in Appendix A and result in all trivial Chern numbers in
this case Cn = 0.

4.2.3 kz = 0

We shall see below that kz = 0, although nominally part of region III calculated
above, is topologically distinct from the general case. For an alternate approach
of kz = 0 Chern number calculations see [5], where these quantities were first
calculated. To summarize the results of Section 4.3 we have the positive eigen-
values and associated eigenvectors of the kz = 0 case below:

ω0 = 0, ω1 =
√
k2 + ω2

p

ω2 =

√
1

2

(
k2 + ω2

h −
√
k4 + 2(2ω2

p − k2)Ω2 +Ω4
)

ω3 =

√
1

2

(
k2 + ω2

h +
√
k4 + 2(2ω2

p − k2)Ω2 +Ω4
)

Ψ
(1)
0 = (0, 0, k), Ψ

(2)
0 = (k × ẑ,−σk, iωpẑ), Ψ

(3)
0 = (k2ẑ, 0,−ik × ẑ)

Ψ1 = (−iẑ, ω1ẑ, k × ẑ)

Ψ2,3 =

(
i

ωp
(I − ϵ−1)k × ẑ, ϵ−1 k

ω2,3
× ẑ, −ẑ

)
Using (15) we can calculate as in the last section:

∂kx
Ψ

(1)
0 = (0, 0, x̂) ∂kx

Ψ
(2)
0 = (−ŷ, σx̂, 0) ∂kx

Ψ
(3)
0 = (2kxẑ, 0,−iŷ)

∂ky
Ψ

(1)
0 = (0, 0, ŷ) ∂ky

Ψ
(2)
0 = (x̂, σŷ, 0) ∂ky

Ψ
(3)
0 = (2ky ẑ, 0, ix̂)
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⇒ (∂kxΨ
∗
0)∂kyΨ0 = 0

for all values of k, Therefore C0 = 0. For Ψ1 we have:

∂kxΨ1 = (0,
2|k|kx
ω1

ẑ,−ŷ)

∂ky
Ψ1 = (0,

2|k|ky
ω1

ẑ, x̂)

F1(k) = −2Im

(
4k2kxky

ω2
1

)
= 0

⇒ C1 = 0

Finally, for the transverse magnetic modes Ψ2, Ψ3 the dependence on k is rather
complex- Ψ2 and Ψ3 depend on ω2/3 and ϵ−1, which itself depends on k and ω.
Therefore (15) is not tractable and using (18) is more appropriate. First, for
the transverse magnetic modes it is necessary to calculate ϵ−1. Remembering
that:

ϵ =

 S iD 0
−iD S 0
0 0 P


with S, D, and P as defined in Section 4.2 we get:

ϵ−1 =
1

S2 −D2

 S −iD 0
iD S 0

0 0 S2−D2

P


Comparing with the calculations from Section 4.3 we can see that

S

S2 −D2
=

S

RL
=

ω2

k2
=

ω2(ω2 − ω2
uh)

ω4 − 2ω2
hω

2 + ω2
p

Similarly:

D

RL
=

ω2
p(ω +Ω)− ω2

p(ω − Ω)

ω(ω2 − Ω2)

ω2(ω2 − Ω2)

ω4 − 2ω2
hω

2 + ω2
p

=
ω2
pΩω

ω4 − 2ω2
hω

2 + ω2
p

=
ω2

k2
ω2
pΩ

ω(ω2 − ω2
uh)

Plugging these results in we get:

ϵ−1 =
ω2

k2


1 −i

Ωω2
p

ω(ω2−ω2
uh)

0

i
Ωω2

p

ω(ω2−ω2
uh)

1 0

0 0 k2

ω2−ω2
p


Define more compact variables α and β for the following calculations we get:

ϵ−1 =

α −iβ 0
iβ α 0
0 0 1/P


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α =
ω2

k2
=

(ω2 − ω2
uh)ω

2

ω4 − ω2ω2
h + ω4

p

β =
ω2
pΩω

ω4 − ω2ω2
h + ω4

p

=
αω2

pΩ

ω(ω2 − ω2
uh)

This allows us to explicitly calculate E and v for the transverse magnetic waves:

E = ϵ−1 k

ω
×ẑ =

1

ω

α −iβ 0
iβ α 0
0 0 1/P

 ky
−kx
0

 =
1

ω

iβkx − αky
iβky − αkx

0

 =
1

ω
(iβkα−k×ẑ)

E∗ = − 1

ω
(αk × ẑiβk)

ẑ × E =
1

ω
(αẑ × (k × ẑ)− iβẑ × k) =

1

ω
(αk − iβẑ × k)

v =
i

ωp
(I−ϵ−1)k×ẑ =

i

ωp
(k×ẑ−ϵ−1k×ẑ) =

i

ωp
(k×ẑ−ωE) =

i

ωp
(k×ẑ−(αk×ẑ−iβk)) = i

(1− α)

ωp
k×ẑ− β

ωp
k

v∗ = −i
(1− α)

ωp
k × ẑ − β

ωp
k

ẑ × v = i
(1− α)

ωp
k − β

ωp
ẑ × k

Calculating the Chern number from the Berry Connection as in (18) assumes
normalized eigenvectors. We have not normalized our eigenvectors in this case
and so will need to do so. Therefore our quantity of interest is:

iΨ∗(Z×Ψ)

|Ψ|2
= i

v∗(ẑ × v) + E∗(ẑ × E) +B∗(ẑ ×B)

|v|2 + |E|2 + |B|2
= i

−i 2β(1−α)k2

ω2
p

+ i 2αβk
2

ω2

k2

ω2
p
((1− α)2 + β2) + 1

α (α
2 + β2) + 1

=

−2β(ω2
p + (α− 1)k2)

ω2
p + k2((1− α)2 + β2) +

ω2
p

α (β2 + α2)

First consider k → ∞. For the upper transverse magnetic mode (ω3) we saw in
Section 4.3 that as k → ∞, ω3 → ∞, and more precisely ω3 → k. Plugging this
result into the definition of α and β we get that limk→∞ α = 1 and limk→∞ β =
0. Therefore for the upper TM mode:

lim
k→∞

−2β(ω2
p + (α− 1)k2)

ω2
p + k2((1− α)2 + β2) +

ω2
p

α (β2 + α2)
= lim

k→∞

−2β(
ω2

p

k2 + (α− 1))
ω2

p

k2 + ((1− α)2 + β2) +
ω2

p

k2α (β
2 + α2)

lim
k→∞

−2ω2β(
ω2

p

k2 + (α− 1))

αω2
p + ω2((1− α2) + β2) + ω2

p(β
2 + α2)

= 0
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It is not immediately apparent that ω2β ̸→ ∞ but we can calculate:

ω2β = αβk2 = α2
k2ω2

pΩ

ω(ω2 − ω2
uh)

→ 0

since ω2 → k2.
For the lower TM mode (ω2) we calculated in Section 4.3 that as k → ∞

ω2 → ωuh. It’s clear from the definition of α that in this case α → 0. For β we
get:

lim
k→∞

β =
ω2
pΩωuh

ω4
uh − ω2

uhω
2
h + ω4

p

=
ω2
pΩωuh

ω4
p +Ω4 + 2ω2

pΩ
2 − (ω2

p +Ω2)(2ω2
p +Ω2) + ω4

p

= −ωuh

Ω

Plugging this in we get:

lim
k→∞

iΨ∗
2(Z×Ψ2)

|Ψ2|2
= lim

k→∞

−2β(
ω2

p

k2 + (α− 1))
ω2

p

k2 + ((1− α)2 + β2) +
ω2

p

k2α (β
2 + α2)

=
−2ωuh

Ω+
ω2

uh

Ω +
ω2

pω
2
uh

Ωω2
uh

= − 2ωuh

2(Ω +
ω2

p

Ω )
= −Ωωuh

ω2
uh

= − Ω

ωp

√
1 + Ω2/ω2

p

= − σ√
1 + σ2

Now as k → 0 we get that:

ω2
2 → ω2

h

2
− 1

2

√
4ω2

pΩ
2 +Ω4 = ω2

0−

and:

ω3 → ω2
h

2
+

1

2

√
4ω2

pΩ
2 +Ω4 = ω2

0+

It will also be useful to define y = 1
2

√
4ω2

pΩ
2 +Ω4. Looking closely we can see

that these are actually the zeros of ω4 − ω2ω2
h + ω4

p so α, β → ∞ as k → 0.
Therefore we can calculate:

lim
k→0

iΨ∗
2(Z×Ψ2)

|Ψ2|2
=

−2(ω2
p + αk2 − k2)

ω2
p

β + k2

β ((1− α)2 + β2) +
ω2

p

αβ (α
2 + β2)

=
−2(ω2

p + ω2
0−)

ω2
p

β +
ω2

0−
α

β − 2
ω2

0−
β + k2

β + k2β + ω2
p(

α
β + β

α )
=

−2(ω2
p + ω2

0−)

(ω2
p + ω2

0−)(
α
β + β

α )
=

−2
α
β + β

α

Here we have made use of the fact that αk2 = ω2 and βk2 = βω2/α. Now we
must find limk→0 α/β:

lim
k→0

α

β
=

ω0−(ω
2
0− − ω2

uh)

ω2
pΩ
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We will first show that ω2
0−(ω

2
0− − ω2

uh)
2 = ω4

pΩ
2. Plugging in definitions we

get:

ω2
0− − ω2

uh = ω2
p +

Ω2

2
− y − ω2

p − Ω2 = −Ω2

2
− y

⇒ (ω2
0− − ω2

uh)
2 =

Ω4

4
+ y2 +Ω2y =

Ω4

4
+ ω2

pΩ
2 +

Ω4

4
+ Ω2y = Ω2(

ω2
h

2
+ y)

Therefore we get:

ω2
0−(ω

2
0−−ω2

uh)
2 = Ω2(

ω2
h

2
+y)(

ω2
h

2
−y) = Ω2(

ω4
h

4
−y2) = Ω2(

4ω4
p + 4Ω2ω2

p +Ω4

4
−(ω2

pΩ
2+

Ω4

4
)) = ω4

pΩ
2

⇒ ω2
pΩ = ±ω0−(ω

2
0− − ω2

uh)

From Section 4.3 we know that ω0− ≤ ω2 ≤ ωuh. Therefore, assuming for now
that Ω > 0 we have that:

ω2
pΩ = −ω0−(ω

2
0− − ω2

uh)

since ω2
pΩ > 0 and ω2

0− − ω2
uh < 0. Therefore for the lower TM mode we get:

lim
k→0

α

β
= lim

k→0

β

α
=

ω0−(ω
2
0− − ω2

uh)

ω2
pΩ

= −1

This gives:

lim
k→0

iΨ∗
2(Z×Ψ2)

|Ψ2|2
=

−2
α
β + β

α

= −1

Repeating the above analysis with ω → ω0+ gives identical results except that
ω0+ > ωuh so:

ω2
pΩ = ω0+(ω

2
0+ − ω2

uh)

Therefore:

lim
k→0

α

β
= lim

k→0

β

α
=

ω0+(ω
2
0+ − ω2

uh)

ω2
pΩ

= 1

and we get:

lim
k→0

iΨ∗
3(Z×Ψ3)

|Ψ3|2
=

−2
α
β + β

α

= 1

Finally, plugging these results into (18) gives:

C3 = lim
k→∞

iΨ∗
3(Z×Ψ3)

|Ψ3|2
− lim

k→0

iΨ∗
3(Z×Ψ3)

|Ψ3|2
= −1

and for the lower harmonic:

C2 = lim
k→∞

iΨ∗
2(Z×Ψ2)

|Ψ2|2
− lim

k→0

iΨ∗
2(Z×Ψ2)

|Ψ2|2
=

σ√
1 + σ2

+ 1
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Figure 2: Left: Numerical calculation of eigenvalues while varying ωp from 0.26
to 0.78 around the critical value ω− = 0.52 for parameter values Ω = 1 and
kz = 0.75. One topologically protected edge state is seen in agreement with
Chern number prediction and previous literature. Right: Numerical calculation
of eigenvalues varying Ω from -1 to 1 with parameter values kz = 0, ωp = 1
without Transverse Electric mode. Two topologically protected edge states are
predicted in the band gap between Transverse Magnetic modes, in agreement
with previous literature.

5 Comparison with Numerical Results

Considering parameter values which vary in x, we can numerically calculate
the eigenvalues of (1) around a boundary between critical values at which band
crossings occur by approximating ∂x by a finite difference matrix and calculating
eigenvectors numerically.

Figure 2 shows calculations for two instances where topologically protected
edge states are predicted numerically. The first frame shows numerical evidence
of the TLCW and confirms the results of [2] [12][10]. In addition, we can compare
these results with the difference in analytically calculated Chern numbers from
the previous section. The TLCW is the edge state between the 1st and 2nd band
at the edge between regions I and II. We see in fact that across this boundary
that ∆C1 = −1 and ∆C2 = 1. Therefore, even though C2 is not integer-valued,
the number of edge modes still corresponds to the difference of Chern numbers.

The right frame shows the band gap between Transverse Magnetic modes
with kz = 0 at the edge between Ω = ±1. Here the difference in Chern num-
bers across the gap is 2 for the upper TM mode, but 2σ/

√
1 + σ2 for the lower

mode. Clearly this non-integer difference is not consistent with a Bulk-Edge
Correspondence, but as shown in [10] regularization of (1) in a physically con-
sistent way produces integer Chern numbers and may allow for a BEC in all
cases.
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Appendix A: Ω = 0 Calculations

In this case from (1) with Ω = 0:

−iωpE = ωv

iωpv − k ×B = ωE

k × E = ωB

(19)

we can now eliminate E easily:

E = i
ω

ωp
v

iωp(1−
ω2

ω2
p

)v = k ×B

i
ω

ωp
k × v = ωB

(20)

First consider ω = 0. From (20) we immediately get that E = 0, iωpv = k×B,
and the third equation becomes trivial. For arbitrary B ∈ C3 we can plug these
values back into (19), confirming that −iE = 0 = ωv, k × E = 0 = ωB and:

iωpv − k ×B = iωp(
−i

ωp
k ×B)− k ×B = 0

Therefore ω = 0 is an eigenvalue with eigenvector:

ω0 = 0

Ψ0 = (− i

ωp
k ×B, 0, B)

for B ∈ {e1, e2, e3} or any other orthonormal basis of C3. We have seen that for
any parameter values Ψ = (0, 0, k) is a zero eigenvector so it is more natural to
choose a basis which includes k and two vectors perpendicular to k. However,
for arbitrary k there is no natural way to choose these two vectors. Choosing a
basis based on k will prove to be essential later.

Next consider the Ansatz ω = ωp. Plugging this into (20) gives the eigen-
value/eigenvector pair:

ω1 = ωp

Ψ1 = (k, ik, 0)

Modes with ω = ωp are often called the plasma or Langmuir oscillations.
Finally, consider the case that v ⊥ k. Then from (20) we have that:

ωB = i
ω

ωp
(k × v) ⇒ k ×B =

i

ωp
k × (k × v) = − i

ωp
k2v

and

iωp(1−
ω2

ω2
p

)v = − i

ωp
k2v ⇒
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(ω2 − ω2
p)v = k2v ⇒

ω2 = k2 + ω2
p

Plugging this value into (19) gives the eigenvalue/eigenvector pair:

ω2 =
√
k2 + ω2

p

Ψ2 = (ωpv, iω2v, ik × v)

We must choose v ⊥ k, but this subspace has dimension 2, so this eigenvec-
tor has a multiplicity of 2. To summarize we have found the eigenvalues and
eigenvectors:

ω0 = 0

Ψ0 = (−ik ×B, 0, ωpB)(3)

ω1 = ωp

Ψ1 = (k, ik, 0)

ω2 =
√

k2 + ω2
p

Ψ2 = (ωpv, iω2v, ik × v)(2)

(21)

Here we have 3 positive eigenvalues, so by the ± symmetry shown in Section
4.1 we can obtain 3 corresponding negative eigenvalues and their corresponding
eigenvectors. Combined with 3 zero eigenvectors we have found all the eigen-
vectors of the system for Ω = 0.

Now apply these eigenvectors to calculate Chern numbers. Since B0 = 0 the
choice of coordinate basis is arbitrary. Therefore WLOG assume that kz ̸= 0.
This allows us to denote an orthogonal eigenbasis which is smooth in k⊥ as
follows:

ω0 = 0, ω1 = ωp, ω2 =
√
k2 + ω2

p

Ψ
(1)
0 = (−ik × x̂, 0, ωpẑ)

Ψ
(2)
0 = (−ik × ŷ, 0, ωpŷ)

Ψ
(3)
0 = (−ik × ẑ, 0, ωpẑ)

Ψ1 = (k, ik, 0)

Ψ
(1)
2 = (k × x̂, iω2(k × x̂), ik × (k × x̂))

Ψ
(2)
2 = (ωpk × ŷ, iω2(ωpk × ŷ), ik × (k × ŷ))

From (13) and (15) it’s easy to see that:

F1 = −2 Im
(
(∂kx

Ψ1)
∗∂ky

Ψ1

)
= (x̂,−ix̂, 0)

 ŷ
iŷ
0

 = 0 ∀k
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⇒ C1 = 0

It’s also straightforward to calculate:
∂kx

(k × x̂) = 0 ∂kx
(k × ŷ) = ẑ ∂kx

(k × ẑ) = −ŷ
∂ky (k × x̂) = −ẑ ∂ky (k × ŷ) = 0 ∂ky (k × ẑ) = x̂

and so
∂kxΨ

(1)
0 = (0, 0, 0) ∂kxΨ

(2)
0 = (−iẑ, 0, 0) ∂kxΨ

(3)
0 = (iŷ, 0, 0)

∂kyΨ
(1)
0 = (iẑ, 0, 0) ∂kyΨ

(2)
0 = (0, 0, 0) ∂kyΨ

(3)
0 = (−ix̂, 0, 0)

Therefore again we have:

(∂kx
Ψ0)

∗Ψ0 = 0 ⇒ F0 = 0 ∀k⊥ ⇒ C0 = 0

Finally, for Ψ2 we can calculate:

∂kx
Ψ

(1)
2 =

(
0, 0, 0, 0, i 2|k|kx

ω2
kz, −i 2|k|kx

ω2
ky, 0, iky, ikz

)T
∂kxΨ

(1)
2 =

(
0, 0, −1, i

2|k|ky

ω2
kz, −i

2|k|ky

ω2
ky, −ω2, −2iky, ikx, 0

)T
Although this time (∂kx

Ψ2)
∗∂ky

Ψ2 ̸= 0 we can see that each component of
∂kx

Ψ2 and the corresponding component of ∂ky
Ψ2 are either purely imaginary

or purely real. Therefore Im
[
(∂kxΨ2)

∗∂kyΨ2

]
= 0 ⇒ F2 = 0 ∀k⊥ so again

C2 = 0. Rotational symmetry gives the same result for Ψ
(2)
2 as Ψ

(1)
2 . Therefore

if B0 = 0 we have that all bands are topologically trivial.

Appendix B: kz = 0 Calculations

−iΩẑ × v − iωpE = ωv

iωpv − k ×B = ωE

k × E = ωB

(22)

noting in this case k ⊥ ẑ. Consider first and zero eigenvectors with v ∥ ẑ. This
gives:

−iΩẑ × v − iωpE = 0 ⇒ E = 0

iωpv − k ×B = 0 ⇒ k ×B = iωpẑ

Assuming that B ⊥ k we can solve for B:

k × (k ×B) = −k2B = iωpk × ẑ ⇒

B = − iωp

k2
k × ẑ

which gives another 0 eigenvector:

Ψ0 = (k2ẑ, 0,−iωpk × ẑ)
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Now consider a zero eigenvector with E ∥ k. Clearly we have k × E = 0 and
plugging into the first equation gives:

iωpE = iωpk = −iΩẑ × v

If we assume that both E and v are perpendicular to ẑ then we get:

−Ωẑ × (ẑ × v) = Ωv = ωpẑ × k ⇒

v =
1

σ
ẑ × k

Plugging into the second line gives:

iωpv =
iωp

σ
ẑ × k = − iωp

σ
k × ẑ = −k ×B ⇒

B = − iωp

σ
ẑ

Therefore the kz = 0 case produces a third zero eigenvector:

Ψ
(3)
0 = (k × ẑ,−σk, iωpẑ)

Now recall that assuming E, v are elliptically polarized in the x/y plane led
to (8), and the kz = 0 case corresponds to θ = π/2, which yields: S iD 0

−iD S − n2 0
0 0 P − n2

E = 0

The first non-trivial solution to this equation is

n2 = P ⇒ k2 = ω2 − ω2
p ⇒

ω2 =
√
k2 + ω2

p

Clearly the E associated with this solution is E = ẑ. Plugging this in to (1) we
get:

k × E = ω2B ⇒

B =
1

ω2
k × ẑ

iωpv − k ×B = ω2E ⇒

v =
iẑ

ωpω2
(k2 − ω2

2) = − iẑωp

ω2

Summarizing, the eigenvector/eigenvalue pair is:

ω2 =
√
k2 + ω2

p
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Ψ2 = (−iωpẑ, ω2ẑ, k × ẑ)

Due to the fact that E ⊥ k this wave is often referred to as the Transverse
Electric wave [7].

The final eigenvalues solve the equation:

S(S − n2)−D2 = 0 ⇒

n2 =
S2 −D2

S
=

RL

S

Plugging in the definitions of n,R,L, S gives:

(
k

ω

)2

=

(
1− ω2

p

ω(ω+Ω)

)(
1− ω2

p

ω(ω−Ω)

)
1
2

(
2−

(
ω2

p(ω+Ω)+ω2
p(ω−Ω)

ω(ω2−Ω2)

)) ⇒

k2 =
ω2(ω2 − Ω2)− 2ω2

pω
2 + ω4

p

ω2 − Ω2 − ω2
p

Denoting the upper-harmonic frequency ω2
uh = Ω2 + ω2

p we get:

k2 =
ω2(ω2 − Ω2)− 2ω2

pω
2 + ω4

p

ω2 − ω2
uh

Immediately we see that there as ω → ±ωuh, k
2 → ∞. With some algebraic

manipulation we get a quartic equation for the remaining eigenvalues:

ω4 − ω2(k2 +Ω2 + 2ω2
p) + (ω4

p + k2ω2
uh) = 0

Absence of odd-degree terms means we can solve using the quadratic formula.
Using the useful substitution ω2

h = Ω2 + 2ω2
p we get:

ω2 =
1

2

(
(k2 + ω2

h)±
√
(k2 + ω2

h)
2 − 4(ω4

p + k2ω2
uh)
)

=
1

2

(
(k2 + ω2

h)±
√
k4 + 2(2ω2

p − k2)Ω2 +Ω4
)

This gives us 2 positive and 2 negative bands. We can also see that if n2 ̸= P ,
then we must have Ez = 0, so in this case E is polarized in the x/y plane. Since
k × E = ωB, then we see that B ∥ ẑ. This is why these last two modes are
sometimes denoted the Transverse Magnetic waves [7]. From (2) we know that
k ×B = ωϵE. Therefore in this case we have:

B = −ẑ

E = ϵ−1 k

ω
× ẑ

v =
i

ωp
(I − ϵ−1)k × ẑ
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